Calculating the value of grade 4 expression is one of the important topics, often appearing in math exams, as well as practical applications. So, to help them conquer this all kind, the following content Mầm non Cát Linh will analyze in detail.
The main expression is the numbers connected through calculations such as addition, subtraction, multiplication, and division. And the value of the expression is the result that we calculate after accurate implementation of the calculations in that expression.
In mathematics, the rules for calculating the expression value will include:
Rule 1: In an expression, if there is only addition and subtraction or multiplication and division, we perform calculations according to the rule from left to right.
Example: 1234 + 4567
Perform calculations in order from right to left we have:
1 plus 4 equals 5, writing 5
2 plus 5 equals 7, writing 7
3 plus 6 equals 9, writing 9
4 plus 7 equals 11, writing 11
Results of expression value 1234 + 4567 = 57911
Rule 2: In an expression, if it contains a circular bracket (), we will have to perform the calculation in the brackets first, then perform the external calculation. In case the expression has many types of parentheses, the round parentheses () prioritize the priority, then to square brackets [] And finally, the braces {}.
For example:
Calculate the expression value: 60320 – (32578 + 17020)
= 60320 – 49598 = 10722
Rule 3: In the expression, consisting of addition, subtraction, multiplication, and division we will prioritize the following rule “multiply, divide before – plus, subtract later”.
Example: Calculate the expression value: 134415 – 134415: 45 = 134415 – 2987 = 131428
Suggest a quick calculation method for additional expressions:
In the 4th grade math program, they will often encounter some exercises on calculating the expression value as follows:
Example: Fast calculation of expression 349 + 602 + 651 + 398
Solution:
349 + 602 + 651 + 398
= (346 + 651) + (602 + 398)
= 1000 + 1000
= 2000
Example: Calculate the expression value 19 × 82 + 18 × 19
Solution:
19 × 82 + 18 × 19
= 19 × (82 + 18)
= 19 × 100
= 1900
Formula: Number of terms = (last term – the first term): distance + 1
After we find the term of the expression with the equidist number sequence, we can quickly perform the sum of those sequences according to the following steps:
For example, calculate the sum of natural numbers from 1 to 100.
Solution:
Natural numbers from 1 to 100 with the numbers are:
(100 – 1): 1 + 1 = 100 (Number)
100 numbers forming pairs are:
100: 2 = 50 (pairs)
We have: 1 + 2 + 3 + 4 + 5 + ……….. + 96 + 97 + 98 + 99 + 100
= (1 + 100) + (2 + 99) + (3 + 98)
+ (4 + 97) + (5 + 96) + …..
= 101 + 101 + 101 + 101
+101 +… 101
= 101 × 50 = 5050
Below Mầm non Cát Linh will summarize some exercises on calculating the value of the 4th grade expression for the reference:
Exercise 1: Calculate the value of the following expression:
a) 16 + 4748 + 142 -183
b) 472819 + 174 – 19 x 98
c) 5647 – 18 + 1874: 2
d) 87 x 192 – 216: 6
– Solution instructions:
Follow the rules of multiplication, division and addition. We have:
a) 16 + 4748 + 142 – 183 = (4748 + 142) – 183 + 16 = 4890 – 167 = 4723
b) 472819 + 174 – 19 x 98 = 472819 + 174 – 1862 = 471131
c) 5647 – 18 + 1874: 2 = 5629 + 937 = 6566
d) 87 x 192 – 216: 6 = 16704 – 36 = 16668
Exercise 2: Find y know:
a) Yx 5 = 1948 + 247
b) Y: 3 = 190 – 90
c) Y – 8357 = 3829 x 2
d) Yx 8 = 182 x 4
– Solution instructions:
a) Yx 5 = 1948 + 247
Yx 5 = 2195
y = 2195: 5
y = 439
b) Y: 3 = 190 – 90
Y: 3 = 100
y = 100 x 3
y = 300
c) Y – 8357 = 3829 x 2
Y – 8357 = 7658
y = 7658 + 8357
y = 16015
d) Yx 8 = 182 x 4
yx 8 = 728
y = 728: 8
y = 91
Exercise 3: Calculate the expression value in the most convenient way.
a) 103 + 91 + 47 + 9
b) 261 + 192 – 11 + 8
c) 915 + 832 – 45 + 48
d) 1845 – 492 – 45 – 92
Solution instructions:
Follow the rules of the expression containing addition, except we have:
a) 103 + 91 + 47 + 9 = (103 + 47) + (91 + 9) = 150 + 100 = 250 = 250
b) 261 + 192 – 11 + 8 = (261 – 11) + (192 + 8) = 250 + 200 = 450
c) 915 + 832 – 45 + 48 = (915 – 45) + (832 + 48) = 870 + 880 = 1750
d) 1845 – 492 – 45 – 8 = (1845 – 45) – (492 +8) = 1800 – 500 = 1300
Exercise 4: Calculate the value of the following calculation:
a) 1245 + 2837
b) 2021 + 194857
c) 198475 – 28734
d) 987643 – 2732
Place and calculate, the digits are in line together. Perform calculation from right to left. We have:
a)
7 plus 5 equals 12, writing 2 remember 1
3 plus 4 equals 7 add 1 more equal to 8, write 8
8 add 2 equals 10, write 0 remember 1
2 plus 1 equal to 3 add 1 equal to 4, write 4
So 1245 + 2837 = 4082
b)
7 plus 9 equals 16, writing 6 remember 1
5 plus 1 equal to 6 add 1 to 7, write 7
8 plus 0 equal to 8, write 8
4 plus 2 equals 6, writing 6
Lower 19 to the result of 196876
So 2021 + 194857 = 196876
c)
5 minus 4 equals 1, writing 1
7 minus 3 equals 4, writing 4
4 Can not deducted 7 borrowed 1, 14 minus 7 equals 7, writing 7 remember 1
Borrow 1 to 18 deducted 9 equal to 9, write 9 remember 1
2 Add 1 equal to 3, 9 minus 3 equals 6, Write 6
1 minus 0 equal to 1, write 1
So 198475 – 28734 = 169741
d)
3 Subtract 2 equals 1, write 1
4 minus 3 equals 1, writing 1
6 Not deducted for 7, borrowed 1 to 16 deducted 7 equal to 9, write 9 remember 1
2 Add 1 equal to 3, 7 minus 3 equals 4, Write 4
Lower 98 to get results: 987643 – 2732 = 984911
Exercise 5: Two days the store sells 5124 liters of oil, knowing that the second day sells less than the first day of 124 liters. Ask how many liters of oil every day.
Solution instructions:
Each day sells the number of liters of oil is:
(5124 – 124): 2 = 5000: 2 = 2500 (liters of oil)
The first day sold more than the 2nd day is:
2500 + 124 = 2624 (liters of oil)
So the first day sold 2624 liters, the second day sold 2500 liters of oil.
Lesson 1: Fast calculation:
A, 237 + 357 + 763
b, 2345 + 4257 – 345
c, 4276 + 2357 + 5724 + 7643
D, 3145 + 2496 + 5347 + 7504 + 4653
E, 2376 + 3425 – 376 – 425
g, 3145 – 246 + 2347 – 145 + 4246 – 347
Lesson 2: Fast calculation:
A, 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5
b, 25 + 25 +25 +25 + 25 + 25 + 25 + 25
c, 45 + 45 +45 + 45 +15 + 15 +15 + 15
D, 2 + 4 + 6 + 8 +10 + 12 +14 + 16 +18
E, 125 +125 +125 +125 – 25 – 25 – 25 – 25 -25
Lesson 3: Fast calculation:
A, 425 × 3475 + 425 × 6525
b, 234 × 1257 – 234 × 257
c, 3876 × 375 + 375 × 6124
D, 1327 × 524 – 524 × 327
E, 257 × 432 + 257 × 354 + 257 × 214
f, 325 × 1574 – 325 × 325 – 325 × 249
G, 312 × 425 + 312 × 574 + 312
H, 174 × 1274 – 175 × 273 – 175
Lesson 4: Fast calculation:
A, 4 × 125 × 25 × 8
b, 2 × 8 × 50 × 25 × 125
c, 2 × 3 × 4 × 5 × 50 × 25
D, 25 × 20 × 125 × 8 – 8 × 20 × 5 × 125
Lesson 5: Fast calculation:
A, 8 × 427 × 3 + 6 × 573 × 4
b, 6 × 1235 × 20 – 5 × 235 × 24
c, (145 × 99 + 145) – 143 × 101 – 143
d, 54 × 47 – 47 × 53 – 20 – 27 – 27
Lesson 6: Fast calculation:
A, 10000 – 47 × 74 – 47 × 26
b, 3457 – 27 × 48 – 48 × 73 + 6543
Lesson 7: Let A = 2009 × 425 and B = 575 × 2009. Excluding A and B, please calculate the results of A + B?
Lesson 8: Calculate fast
(145 × 99 + 145) – (143 × 102 – 143 × 2) + 54 × 47 – 47 × 53 – 20 – 27 – 27 – 27 – 27 – 27 – 27 – 27 – 27 – 27 – 27 – 27 – 27 – 27 – 27 – 27 – 27 – 27 – 27 – 27 – 27 – 27
Lesson 9: Given the expression A = 1496: (213 – x) + 237
a) Calculate a when x = 145
b) Find x to a = 373
Lesson 10: Calculate
A, 54 × 113 + 45 × 113 + 113
b, 54 × 47 – 47 × 53 – 20 – 27 – 27
c, 10000 – 47 × 72 – 47 × 28
D, (145 × 99 + 145) – (143 × 101 – 143)
E, 1002 × 9 – 18
F, 8 × 427 × 3 + 6 × 573 × 4
G, 2008 × 867 + 2009 × 133
Lesson 11: Calculate the value of the expression
A, 234576 + 578957 + 47958B, 41235 + 24756 – 37968C, 324586 – 178395 + 24605D, 254782 – 34569 – 45796666
Lesson 12: Calculate the value of the expression
A, 967364 + (20625 + 72438) B, 420785 + (420625 – 72438) C, (47028 + 36720) + 43256D, (35290 + 47658) – 57302E, (72058 – 45359) + 26705F, (60320 – 32578) – 17020202020202020201202019)
Lesson 13: Calculate the value of the expression
A, 25178 + 2357 x 36b, 42567 + 12336: 24C, 100532 – 374 x 38D, 2345 x 27 + 45679E, 12348: 36 + 2435F, 134415 – 134415: 45g, 235 x 148 – 148H, 115938: 57 – 57 – 57 – 57
Lesson 14: Calculate the value of the expression
A, 324 x 49: 98B, 4674: 82 x 19C, 156 + 6794: 79D, 7055: 83 + 124E, 784 x 23: 46F, 1005 – 38892: 42: 42
Lesson 15: Calculate the value of the expression
A, 427 x 234 – 325 x 168b, 16616: 67 x 8815: 43C, 67032: 72 + 258 x 37d, 324 x 127: 36 + 873
Lesson 16: Calculate the value of the expression
A, 213933 – 213933: 87 x 68b, 15275: 47 x 204 – 204C, 13623 – 13623: 57 – 57D, 93784: 76 – 76 x 14
Lesson 17: Calculate the value of the expression
a, 48048 – 48048 : 24 – 24 x 57b, 10000 – (93120 : 24 – 24 x 57)c, 100798 – 9894 : 34 x 23 – 23d, 425 x 103 – (1274 : 14 – 14)e, (31850 – 730 x 25) : 68 – 68f, 936 x 750 – 750 : 15 -15
Lesson 18: Calculate the value of the expression
A, 17464 – 17464: 74 – 74 x 158b, 32047 – 17835: 87 x 98 – 98C, (34044 – 324 x 67): 48 – 48D, 167960 – (167960: 68 – 68 x 34)
Lesson 19: Given the expression P = M + 527 x n. Calculate P when m = 473, n = 138.
Lesson 20: Give the expression P = 4752: (x – 28)
a, Calculate p when x = 52
b, Find x to p = 48
Lesson 21: Give the expression A = 1496: (213 – x) + 237
a, Calculate A when x = 145
b, Find x to a = 373
Lesson 22: Give the expression b = 97 x (x + 396) + 206
a, Calculate B when x = 57
b, Find x to b = 40849
Lesson 23: Write each expression after the achievement of factors:
A, 12 + 18 + 24 + 30 + 36 + 42
b, mm + pp + xx + yy
c, 1212 + 2121 + 4242 + 2424
Lesson 24: Given the expression A = 3 x 15 + 18: 6 + 3. Put the parentheses on the appropriate position so that the expression A has a value of (presenting the steps)
a, 47
b, the smallest number possible
c, the largest number possible
For the knowledge of calculating the value of the 4th grade math expression, to help them understand, easy to conquer this exercise, do not ignore the following tips:
See also:
Addition
Subtraction properties
Multiplication properties
Division
Register now to receive up to 40% incentives and many attractive gifts from Mầm non Cát Linh for children.
Above is the knowledge about the value of the 4th grade expression.
Nguồn: https://mncatlinhdd.edu.vn/ Tác giả: Nguyễn Lân dũng
Giáo sư Nguyễn Lân Dũng là một trong những nhà khoa học hàng đầu Việt Nam trong lĩnh vực vi sinh vật học, với hơn 50 năm cống hiến cho giáo dục và nghiên cứu (Wiki). Ông là con trai của Nhà giáo Nhân dân Nguyễn Lân, xuất thân từ một gia đình nổi tiếng hiếu học. Trong sự nghiệp của mình, Giáo sư đã đảm nhiệm nhiều vị trí quan trọng như Chủ tịch Hội các ngành Sinh học Việt Nam, Đại biểu Quốc hội và được phong tặng danh hiệu Nhà giáo Nhân dân vào năm 2010.
Các số la mã là kiến thức toán học cơ bản, nhưng ứng dụng khá…
Chuẩn bị hành lý vào lớp 1 cho trẻ em 5 tuổi là một động…
Toán cho bé chuẩn bị vào lớp 1 là bước khởi đầu quan trọng giúp…
Mùa hè đã gõ cửa, bạn đang băn khoăn làm sao để các bé có…
Năm 2025, xu hướng du lịch hè dành cho gia đình đang có nhiều thay…
Mùa hè đến, ba mẹ luôn mong muốn tìm kiếm những hoạt động vừa bổ…
This website uses cookies.